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Abstract-The physical significance of the relaxation time in the wave theory of heat conduction is further 
studied in this work. Thermodynamically, it is confirmed that the relaxation time results from the rate- 
equation within the mainframe of the second law in the nonequilibrium, irreversible thermodynamics. 
Mechanically, on the other hand, the relaxation time results from the phase-lag between the heat flux 
vector and the temperature gradient in a high-rate response. In transition from a diffusion behavior to the 
wave propagation, lastly, the relaxation time is found to be the physical instant at which the intrinsic length 

scales merge with each other. 

INTRODUCTION 

THE THERMAL wave theory is proposed to remove the 
paradox in the classical diffusion model assuming an 
infinite speed for heat propagation. The early work by 
Maxwell [I] on the kinetic theory of gases has had 
a significant impact on the recent development. The 
momentum transfer through collisions of molecules 
inspires the consideration of a finite speed of heat 
propagation in solids. The experiment made by Pesh- 
kov [2] directly shows that the thermal wave speed in 
liquid helium at 1.4 K is 19 m s-‘. Since then, the 
wave behavior in heat conduction has been argued 
from various physical points of view. It includes the 
hypothetical formulation suggested by Morse and 
Feshbach [3], Vernotte [4, 51, and Cattaneo [6]. The 
latter works by Chester [A and Weymann [8] are 
representatives demonstrating the necessity of a finite 
speed of heat propagation from a microscopic point 
of view. These works, along with the arguments from 
the theory of relativity [9, lo], provides a physical 
foundation for the thermal wave phenomenon. 

Continuing the works by Baumeister and Hamill 
[II], Taitel [12], and Wiggert [13], Gzisik and his 
colleagues [14-161 remarkably advance the thermal 
wave theory to engineering applications. The dis- 
continuity of temperature gradient at the thermal 
wavefront has attracted a lot of attention and presents 
a unique feature in the thermal wave propagation. 
The thermal shock formation around a fast-moving 
heat source [17-191 and in the vicinity of a rapidly 
propagating crack tip [20,21] adds additional novelty 
into the thermal wave theory. When extended to pre- 
dicting the crack trajectory emanating from the heat 
source [22, 231, the shock wave effect dramatically 
alters the fracture pattern predicted by the diffusion 
theory. For a crack dynamically propagating in 4340 
steel, most importantly, the transonic and supersonic 
wave solutions obtained by Tzou [20] have presented 

several salient features in the experimental results 
obtained by Zehnder and Rosakis [24]. The encour- 
aging coincidences between the theory and the exper- 
iment are reported in ref. [25]. It further confirms the 
value of thermal wave theory for engineering appli- 
cations. Including all the other research efforts, the 
recent annual review article by Tzou [26] provides a 
complete source for additional references. 

The relaxation behavior is the fundamental mech- 
anism for the thermal resonance phenomenon [27-291 
which cannot be depicted by diffusion. It bridges the 
thermal wave speed (C) to the thermal diffusivity (CL) 
in the wave theory of heat conduction. Mathemat- 
ically, the relaxation time r is equal to u/C’. Since the 
thermal diffusivity is well-tabulated, the value of r 
relies on the thermal wave speed C. Generally speak- 
ing, the value of 7 depends on temperature. For the 
thermal wave speed around 900 m s- ’ in 4340 steel at 
480°C [25], for example, the value of 7 is of the order 
of 1 O- ’ ’ s. Due to the absence of a rigorous table for 
the thermal wave speed under various temperatures, a 
table for the relaxation time for engineering materials 
(including both fluid and gas) is, unfortunately, still 
absent at this point. Except some physical interpret- 
ations made from a microscopic point of view, more- 
over, the engineering significance of the relaxation 
time has not been fully addressed. The present work 
makes an attempt to examine the relaxation time in the 
thermal wave theory from the extended irreversible 
thermodynamics, the behavior of phase-lag in solids 
under high-rate response, and the transition of intrin- 
sic length scale from the diffusion behavior to the 
wave propagation. 

EXTENDED IRREVERSIBLE 

THERMODYNAMICS 

Any admissible form of constitutive laws must 
satisfy the restrictions of thermodynamics. The classi- 
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NOMENCLATURE 

positive-definite constant [w m- ’ K] 
speed of sound [m s- ‘1 
positive-definite constant [Pa s K] 
thermal wave speed [m s- ‘1 

V specific volume [m3 kg- ‘1 
X one-dimensional space variable [m] 
Z integrable variable [s]. 

volumetric heat capacity of electron gas 
[Jm-3K-’ 1 
volumetric heat capacity of metal lattice 
[Jm-‘K-’ 1 
heat capacity [J kg- ’ K- ‘1 
integration constant, dimensionless 
specific internal energy per unit per mass 
[J kg- ‘I 
electron-phonon coupling factor 
[w me3 K-‘1 
indices for coordinates, i, j = 1, 2, 3 
entropy flux [w me2 K- ‘1 
Boltzmann constant [J K- ‘1 
thermal conductivity [w m- ’ k- ‘1 
pressure tensor [pa] 
thermodynamic pressure [pa] 
rate of energy generation per unit volume 
W m-‘I 

thermal diffusivity [m2 s- ‘1 
Greek symbols 

isotropic constant [m s2 J- ‘1 
isotropic constant [Pa- ‘1 
Kronecker delta function, dimensionless 
deformation tensor [mm nun ‘1 
intermediate time between 0 and t [s] 
fluid viscosity [Pa s] 
variable of the similarity transformation, 
dimensionless 
mass density @g m- ‘1 
mechanical stress tensor [pa] 
entropy production rate per unit volume 
[Wme3 K-‘1 
relaxation time or phase lag of heat flux 
vector [s] 
relaxation time or phase lag of the stress 
tensor [s]. 

=M 

heat flux vector [w mm21 
position vector in Euclidean space [m] 
specific entropy per unit mass 
[J kg- ’ K- ‘1 
physical time [s] 
absolute temperature [K] 
velocity vector [m s- ‘1 

Other symbols 
V2 Laplacian operator [m- ‘]. 

Subscripts and superscripts 
X, ax/ax, 
li;, x,, ax/at. 

cal Fourier’s law in heat conduction, for example, is 
an admissible form assuring a positive definite entropy 
production rate. As a brief review for this important 
character, let us consider the classical Gibbs equation 
which assumes local equilibrium for thennostatics 
[30-321: 

(1) 

where s, e, v, T and p are, respectively, the specific 
entropy per unit mass, the specific internal energy per 
unit mass, the specific volume being reciprocal of the 
mass density (v = 1 /p), the absolute temperature, and 
the thermodynamic pressure. The specific internal 
energy e and the specific volume (v) are state variables 
suitable for describing an equilibrium thermodynamic 
process, i.e. s = s(e, v). In relation to the rate change 
of entropy, 

The time-rate change of entropy per unit volume is 
thus 

1 

with superscript dots denoting differentiations with 
respect to time. Determination of ph and pd on the 
right-hand side of the equation lies in the conservation 
laws governing the physical processes of transition in 
the thermodynamic system [3 1,321: 

pti = u,., (conservation of mass) (4) 

pii = - ciij (conservation of momentum) (5) 

pi = - qi,i- P& (conservation of energy) (6) 

where homogeneous thermo-mechanical properties 
have been ass’umed. In these equations, repeated indi- 
ces in a single term or products denote summations. 
The quantity ui is the transport velocity in the medium, 
br/ the rate of deformation tensor defined as & = 
(u,~+u,,,)/~, P, the pressure tensor, and q, the heat flux 
vector. The pressure tensor (Pa) can be decomposed 
into the isotropic, thermodynamic pressure tensor 
(&) and the mechanical stress tensor (a$). Math- 
ematically, 

p, = p&+a, (7) 
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On substituting equations (4), (6), and (7) into (3), it 
results 

In comparison with the most general form of the 
conservation equation for entropy, 

pS+Ji+i = Z, (9) 

with J being the entropy flux and C the entropy pro- 
duction rate per unit volume, it is clear that the 
entropy production rate C is composed of the pro- 
ducts between the thermal and mechanical 

J= !% 
i 

0 

T  ,, 
(10) 

.I 

fluxes (qi and oij, respectively) and the generalized 
driving forces (T,dT’ and au/T). The second law of 
thermodynamics requires YE be positive-definite. In 
view of its quadratic form shown in (lo), the simplest 
forms relating fluxes to driving forces are linear and 
represented by 

% = - $ Tei = -kT*, 
B 

uii = -+ = -2&, 

with k > 0, p > 0. (11) 

They are some of the many admissible forms ensuring 
a positive-definite entropy production rate. Obviously, 
the first equation in (11) is the Fourier law in heat 
conduction while the second is the Stokes law of vis- 
cosity in fluid mechanics. They are linear approxi- 
mations to general functionals satisfying the condition 
of Z > 0. Replacing qi in the tist equation of (11) by 
q:, for example, also yields an admissible form ensur- 
ing Z > 0. It yields, however, a nonlinear constitutive 
equation for heat conduction. 

Note that the state variables, e and v, used in the 
Gibbs potential (1) or (3) are well-defined for ther- 
modynamic processes assuming local equilibrium. 
When nonequilibrium transition occurs, additional 
state variables are needed to complete the description 
of the rate change of entropy. On a philosophical 
basis, the generalized flux is a natural consequence of 
an unbalanced thermodynamic driving force. It is 
ideal to be incorporated as a fundamental state vari- 
able for describing the nonequilibrium transition in 
a thermodynamic process [33]. The total change of 
entropy in a material volume is thus extended : 

(12) 

with q, (the heat flux vector) and ui/ (the stress tensor) 
serving as the generalized fluxes. In line with the classi- 
cal thermodynamics assuming local equilibrium, the 
absolute temperature and pressure are well-defined : 

The associated derivatives with respect to qi and oii, 

as 
- = - ;A% 

aqi 
g = - ;BH"(i, (14) 

1, 

are assumed for linear approximations perturbed 
from the local equilibrium state. The proportional 
constants jT and /iM are scalar. The time-rate change 
of entropy, therefore, becomes 

Pi PPd 8-r Bhi 
pi = 7 + T - ,q,Q,- Taijtt,j. (1% 

Substituting the conservation equations for mass and 
energy, (4) and (6), and using (7), it results 

qi pi+ y ,i 0 
0, = Brwii + -L_- 
T2 T I[ u@, ju uiib’il 

----. 
T T 1 (16) 

While the entropy flux has the same form as that 
shown in (lo), the entropy production rate in the 
present extended scheme becomes 

As required by the second law of thermodynamics, 
the entropy production rate must be positive definite. 
In view of the quadratic forms between the generalized 
fluxes and driving forces, similarly, 

with A, B being positive (18) 

are some of the many possibilities assuring Z > 0. Re- 
arranging equation (18), then, gives 

qi+nji = -kT.i, aV+r,tiV = -22/18, (1% 

where 

k=$, 2/i=;, 4% 4% ‘r=----, TM=-. 
T T cm 

For A and B being positive and temperature T mea- 
sured on an absolute scale, Z > 0 implies k > 0, p > 0, 
t > 0 and rM > 0. When z = 0 and rlrl = 0, the rate 
equations in equation (19) reduce to the constitutive 
laws in thermostatics, equation (11). While the second 
equation depicts the Maxwell flow behavior in non- 
Newtonian fluids [34], the first equation is indeed 
the constitutive law assumed in the linear theory of 
thermal wave propagation. Note also that r and r’M 
have the dimension of time. They are termed ‘relax- 
ation time’ in the sense that even a zero driving force 
(T,i or .$) results in an exponentially decayed response 
of flux (q, or a,,) in time. In passing, it should be noted 
that the linear forms suggested by equation (19) are 
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by no means rigorous. Should linear dependencies of way in which the temperature gradient is accumulated 
&jag, on u,, and as/&s, on &be incorporated in equa- from 0 to t. Apparently, the heat flux vector has a 
tion (14), for example, a set of coupled constitutive memory keeping track of the time-history of the tem- 
equations would result. The approach by Jou et al. perature gradient. The integral relationship shown by 
[33] provides a more general treatment involving (24) can be reduced to an algebraic expression by the 
mechanical work done by the deviatoric and the mean value theorem, 
hydrostatic components. It also includes an updated 
survey about the development of rate-dependent kt 

constitutive equations in continuum mechanics. 
qi(rj,t) = - ;exp 

( > 
7 T.f(rj, VI. (25) 

THE PHASE LAG 

with 9 being an intermediate time between 0 and t. 
This is the reason that some researchers associate the 

Another approach to describe the relaxation 
fading memory to thermal wave propagation [35]. 

behavior in thermal wave propagation is to employ 
The intrinsic transition from a rate-independent 

the physical concept of time-lag between the heat flux 
(thermostatics) to a rate-dependent (thermodyn- 

vector and the temperature gradient 
amics) response is nontrivial. As a result of such a 
transition, mathematically, the energy equation (6) 

q,(ri, t+r) = -kTi(rh 0. (21) transits from a parabolic to a hyperbolic type. 

where rj is the position vector of the material volume 
Discontinuities of temperature gradient at the wave- 

under observation and k the principal thermal con- 
front and the thermal shock formation around a mov- 

ductivity in the isotropic thermal conductivity tensor 
ing origin are typical examples resulting from such a 

k,. Mathematically, k, = k6,. While the appearance 
transition 

ok the Fourier law is detained, equation (21) depicts 
that the temperature gradient established at time I 
results in a delayed heat flux occurring at a later time 
t+r. Such a ‘choking’ phenomenon may be a mech- 
anism of heat transfer in solids subject to thermal 
excitations varying with a high-rate. In the absence of 
a delayed response, 7 = 0, equation (21) reduces to 
the Fourier law in heat conduction. While equation 
(21) provides a general scheme to incorporate the 
physical mechanism of delayed responses, a linear 
version results from the Taylor’s series expansion 
applied to qi with respect to 7 

INTRINSIC LENGTH SCALE 

Mechanical work (PO.&) was included in the energy 
equation (6) for the sake of generality. It may be 
neglected when emphasis is placed on the process of 
heat conduction. The temperature representation for 
the energy equation has been derived by many 
authors : 

Tii+ j&!+7Q.,) = ;T.,+ iT.,,, (26) 
P 

q,@,, f+7) 

= q,(rj, t) + q 7+O(r2) = -kTi(r,, t). (22) 

For 7 being small, up to the first order, equation (22) 
is approximated by 

qi(rj, f)+7&(rj, t) = -kTi(rj, t). (23) 

It has the same form as that in equation (19) derived 
from nonequilibrium thermodynamics. In addition 
to revealing the delayed response explicitly, equation 
(23) also relates the heat flux to the temperature gradi- 
ent at the same instant of time. This is required for all 
the physical quantities involved in the constitutive 
laws, equations (4)-(6). 

Though linearized, equation (23) does reveal an 
important characteristic, namely the path-depen- 
dency, in the thermal loading history. Integrating (23) 
directly, it yields 

%(rj,t)= -iexp(--i)lexp(:)Ti(rj,z)dr. (24) 

In addition to the point value of T.i at time t, equation 
(24) indicates that the heat flux qi also depends on the 

where CI is the thermal diffusivity and Q the body heat 
source. In the absence of time-lag, 7 = 0 and equation 
(26) reduces to the classical diffusion equation. Note 
that T.,E T,,,+T,,,+T,,=V2T because the 
repeated index i is summed over. The presence of 7 

intrinsically alters the characteristics of temperature 
since it appears in the highest order time-derivative in 
the energy equation. Also, an apparent heat source, 
(t/~aC&, presents due to the relaxation behavior. 
It involves time-derivative of the real heat source gen- 
erated from or applied to the solid medium [ 16, 17- 
19, 27-291. 

By focusing attention on the terms of T., and 
(da) T,, in W9, 

a2T 1 d2T 
ax,,xi+- =-.+TF’ 

0 

(27) 
- 
7 

it is evident that (a/T)? must have a dimension of 
square of a length. It suggests that the ratio J(a/T) 
must be a velocity-like quantity. In other words, 

with C being the thermal wave speed in the solid 
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medium. Both tl and 7 are intrinsic thermal properties 
of the medium. The resulting thermal wave speed C, 
therefore, is also an intrinsic thermal property. It char- 
acterizes the thermal wave propagation along with 
the diffusion behavior characterized by the diffusivity. 
This observation based on the dimensional con- 
sistency is by no means rigorous. However, it leads to 
the same result as that derived by the collision theory 
of molecules from a microscopic point of view [7, 
81. As termed by Chester [7], the reciprocal of the 
relaxation time, f = l/r, is the critical frequency dic- 
tating the activation of thermal wave behavior. When 
the collision frequency among molecules exceeds such 
a threshold, the wave behavior in heat conduction 
dominates over diffusion. 

A one-dimensional response without heat gen- 
eration will be used to illustrate transition of the 
intrinsic length scale. For a relatively long-time 
response in transient, the diffusion behavior in heat 
conduction dominates over the wave behavior. In this 
case, the diffusion equation is retrieved : 

a2T 1dT 
ax’=;,,, 

with x being the space variable. In a similar con- 
sideration for the dimensional consistency, it is evi- 
dent that ,/(crt) has a dimension of length. The length 
is intrinsic in the sense that it involves the thermal 
diffusivity, an intrinsic property of the medium, and 
the response time. This observation, in essence, leads 
to the similarity transformation in the diffusion 
theory. Introducing 

as the dimensionless variable owing to the similar 
dimension of ,/(crt) to a length, the diffusion equation 
(29) is reduced to an ordinary differential equation, 

d2T 5dT 
--@fZ-@=Q. 

It yields the famous error-function-solution (for 
example [36]), 

, 

with constant C, determined from the appropriate 
initial/boundary conditions or heat source generated 
from the solid. The constant 2 normally involved in 
the similarity transformation, i.e. < = x/,/Q@, is to 
eliminate the 2 in equation (32). This is for the clean- 
ness of the mathematical result and not absolutely 
necessary. 

For a relatively short-time response, on the other 
hand, the wave behavior dominates over diffusion. 
Equation (26) in this case reduces to a wave equation, 

a2T 1 a2T -=--. 
a2 c2 at2 (33) 

Obviously, the intrinsic length scale switches to Ct. 
The similarity transformation, consequently, is modi- 
fied : 

Applying the chain rules for the differentiations in 
equation (33), then, the following ordinary differential 
equation results 

d2T dT 
(1 -C’,-@ -2r,, = 0. 

Solving for T, it gives 

Due to the finite speed of heat propagation, no ther- 
mal disturbance is present in the physical domain of 
x > Ct (ahead of the wavefront). The applicable range 
of equation (36) for temperature, therefore, is con- 
fined to the domain of 0 < 5 < 1. In the vicinity of 
the wavefront at x = Cf, i.e. 5 = 1, a log-type singu- 
larity is present. Due to such a singularity in tem- 
perature, a pure wave behavior is not allowed in ther- 
mal wave propagation without the counterbalanced 
effects from diffusion. The Laplace transform solution 
obtained by Baumeister and Hamill [l l] incorporates 
both effects of wave and diffusion. It has been shown 
that the temperature remains bounded at the thermal 
wavefront while the singularity of temperature gradi- 
ent still presents. 

Equations (30) and (34) provide the intrinsic length 
scales for the asymptotic behavior of thermal waves. 
In summary, the length scale for the long-time 
response in transient, namely diffusion, is ,/(Lx~) while 
that for the short-time response, namely wave, is Ct. 
On a physical basis, the two scales merge at a certain 
instant of time when both effects present. Equating 
(30) to (34), then, yields 

which has the same form as the relaxation time in 
equation (28). Because the thermal diffusivity and the 
thermal wave speed are intrinsic properties of the 
medium, the physical instant at which the intrinsic 
length scales in diffusion and wave merges is a thermal 
property of the medium. Different media have differ- 
ent merge times in transient. 

CONCLUSION 

The relaxation time in the thermal wave theory has 
been examined from various physical points of view. 
It is admissible within the mainframe of the second 
law in the nonequilibrium, irreversible thermo- 
dynamics. It is the time-lag between the heat flux 
vector and the temperature gradient when response 
time is short. It is also the physical instant at which 
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the intrinsic length scale in diffusion transits to that 
in wave. These observations should provide sufficient 
physical basis to picture the relaxation time used for 
modelling the process in high-rate heat conduction. 

In relation to the macroscopic thermal properties, 
the relaxation time T  is cc/C’. In a series of recent 
works correlating the thermal wave theory to the 
microscopic two-step model [37, 381, moreover, the 
thermal wave speed (C) is related to the coupling 
factor (G) of the electron-phonon collisions and the 
volumetric heat capacities of the electrons (C,) and 
the metal lattice (C,) by 

cc g 
J e I 

The relaxation time (T), consequently, is 

(3% 

The coupling factor of electron-phonon interactions 
depends on the number density of electrons (n,), speed 
of sound (a), thermal conductivity (k), and Bolzmann 
constant (K). Mathematically, within the limit of Wie- 
demann-Franz’s law [39], G = rr4(n,aK)2/k. In con- 
trast to the macroscopic relationship, equation (39) 
expresses the relaxation time in terms of the micro- 
scopic quantities such as the number density of elec- 
trons and heat capacity of the electron gas. Through 
the speed of sound, moreover, the relaxation time 
further depends on the atomic number density, Debye 
temperature, and plank constant. The microscopic 
point of view may shed light on the determination of 
r (the relaxation time) and C (the thermal wave speed) 
from solid state physics. Many quantities in equations 
(38) and (39) are temperature sensitive. The heat 
capacity of electron gas, for example, may linearly 
increase with temperature. For a temperature increase 
of 1500 K in the electron gas, which is typical for 
metals subjecting to a laser tluence of 50 J m-’ [39], 
the thermal wave speed may reduce to half (50%) of 
its value at room temperature. The relaxation time, 
consequently, may become five times larger. Such an 
estimate is still qualitative because the other physical 
properties are assumed constant. A detailed, quan- 
titative analysis must accommodate the temperature 
dependence of all the physical properties as an 
entirety. 

In developing a suitable model for describing cer- 
tain phenomena in engineering, establishment of a 
rigorous physical basis and comparison with exper- 
imental observations are equally important. While the 
near-tip temperature field in the transonic and super- 
sonic ranges [25] has been confirmed by a recent exper- 
iment [24] for dynamic crack propagation, the present 
work has addressed the physical meaning of the relax- 
ation time in an engineering sense. It aims to enhance 
the physical foundation of the thermal wave theory 

and hopefully will lead to more research toward engin- 
eering applications of the wave theory in heat con- 
duction. 
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